class TransientClimateResponseEmissions(ESMValToolDiagnostic):
"""
Calculate the global mean Transient Climate Response to Cumulative CO2 Emissions.
"""
name = "Transient Climate Response to Cumulative CO2 Emissions"
slug = "transient-climate-response-emissions"
base_recipe = "recipe_tcre.yml"
variables = (
"tas",
"fco2antt",
)
data_requirements = (
DataRequirement(
source_type=SourceDatasetType.CMIP6,
filters=(
FacetFilter(
facets={
"variable_id": variables,
"experiment_id": "esm-1pctCO2",
"table_id": "Amon",
},
),
FacetFilter(
facets={
"variable_id": "tas",
"experiment_id": "esm-piControl",
"table_id": "Amon",
},
),
),
group_by=("source_id", "member_id", "grid_label"),
constraints=(
RequireContiguousTimerange(group_by=("instance_id",)),
RequireOverlappingTimerange(group_by=("instance_id",)),
RequireFacets("experiment_id", ("esm-1pctCO2", "esm-piControl")),
RequireFacets("variable_id", variables),
AddSupplementaryDataset.from_defaults("areacella", SourceDatasetType.CMIP6),
),
),
)
facets = ("grid_label", "member_id", "source_id", "region", "metric")
# TODO: the ESMValTool diagnostic script does not save the data for the timeseries.
series = tuple()
@staticmethod
def update_recipe(
recipe: Recipe,
input_files: dict[SourceDatasetType, pandas.DataFrame],
) -> None:
"""Update the recipe."""
# Prepare updated datasets section in recipe. It contains three
# datasets, "tas" and "fco2antt" for the "esm-1pctCO2" and just "tas"
# for the "esm-piControl" experiment.
recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
tas_esm_1pctCO2 = next(
ds for ds in recipe_variables["tas"]["additional_datasets"] if ds["exp"] == "esm-1pctCO2"
)
fco2antt_esm_1pctCO2 = next(
ds for ds in recipe_variables["fco2antt"]["additional_datasets"] if ds["exp"] == "esm-1pctCO2"
)
tas_esm_piControl = next(
ds for ds in recipe_variables["tas"]["additional_datasets"] if ds["exp"] == "esm-piControl"
)
tas_esm_piControl["timerange"] = tas_esm_1pctCO2["timerange"]
recipe["diagnostics"]["tcre"]["variables"] = {
"tas_esm-1pctCO2": {
"short_name": "tas",
"preprocessor": "global_annual_mean_anomaly",
"additional_datasets": [tas_esm_1pctCO2],
},
"tas_esm-piControl": {
"short_name": "tas",
"preprocessor": "global_annual_mean_anomaly",
"additional_datasets": [tas_esm_piControl],
},
"fco2antt": {
"preprocessor": "global_cumulative_sum",
"additional_datasets": [fco2antt_esm_1pctCO2],
},
}
recipe["diagnostics"].pop("barplot")
# Update descriptions.
dataset = tas_esm_1pctCO2["dataset"]
ensemble = tas_esm_1pctCO2["ensemble"]
settings = recipe["diagnostics"]["tcre"]["scripts"]["calculate_tcre"]
settings["caption"] = (
settings["caption"].replace("MPI-ESM1-2-LR", dataset).replace("r1i1p1f1", ensemble)
)
settings["pyplot_kwargs"]["title"] = (
settings["pyplot_kwargs"]["title"].replace("MPI-ESM1-2-LR", dataset).replace("r1i1p1f1", ensemble)
)
@staticmethod
def format_result(
result_dir: Path,
execution_dataset: ExecutionDatasetCollection,
metric_args: MetricBundleArgs,
output_args: OutputBundleArgs,
) -> tuple[CMECMetric, CMECOutput]:
"""Format the result."""
tcre_ds = xarray.open_dataset(result_dir / "work" / "tcre" / "calculate_tcre" / "tcre.nc")
tcre = float(fillvalues_to_nan(tcre_ds["tcre"].values)[0])
# Update the diagnostic bundle arguments with the computed diagnostics.
metric_args[MetricCV.DIMENSIONS.value] = {
"json_structure": [
"region",
"metric",
],
"region": {"global": {}},
"metric": {"tcre": {}},
}
metric_args[MetricCV.RESULTS.value] = {
"global": {
"tcre": tcre,
},
}
return CMECMetric.model_validate(metric_args), CMECOutput.model_validate(output_args)