class SeaIceSensitivity(ESMValToolDiagnostic):
"""
Calculate sea ice sensitivity.
"""
name = "Sea ice sensitivity"
slug = "sea-ice-sensitivity"
base_recipe = "recipe_seaice_sensitivity.yml"
data_requirements = (
DataRequirement(
source_type=SourceDatasetType.CMIP6,
filters=(
FacetFilter(
facets={
"variable_id": "siconc",
"experiment_id": "historical",
"table_id": "SImon",
},
),
FacetFilter(
facets={
"variable_id": "tas",
"experiment_id": "historical",
"table_id": "Amon",
},
),
),
group_by=("experiment_id",), # this does nothing, but group_by cannot be empty
constraints=(
RequireTimerange(
group_by=("instance_id",),
start=PartialDateTime(1979, 1),
end=PartialDateTime(2014, 12),
),
RequireFacets(
"variable_id",
required_facets=("siconc", "tas"),
group_by=("source_id", "member_id", "grid_label"),
),
AddSupplementaryDataset.from_defaults("areacella", SourceDatasetType.CMIP6),
AddSupplementaryDataset.from_defaults("areacello", SourceDatasetType.CMIP6),
RequireFacets(
"variable_id",
required_facets=("areacello",),
group_by=("source_id", "grid_label"),
),
),
),
)
facets = ("experiment_id", "source_id", "region", "metric")
@staticmethod
def update_recipe(
recipe: Recipe,
input_files: dict[SourceDatasetType, pandas.DataFrame],
) -> None:
"""Update the recipe."""
recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
datasets = recipe_variables["tas"]["additional_datasets"]
for dataset in datasets:
dataset.pop("mip")
dataset["timerange"] = "1979/2014"
recipe["datasets"] = datasets
@staticmethod
def format_result(
result_dir: Path,
execution_dataset: ExecutionDatasetCollection,
metric_args: MetricBundleArgs,
output_args: OutputBundleArgs,
) -> tuple[CMECMetric, CMECOutput]:
"""Format the result."""
metric_args[MetricCV.DIMENSIONS.value] = {
"json_structure": [
"source_id",
"region",
"metric",
],
"source_id": {},
"region": {},
"metric": {},
}
for region in "antarctic", "arctic":
df = pd.read_csv(
result_dir / "work" / region / "sea_ice_sensitivity_script" / "plotted_values.csv"
)
df = df.rename(columns={"Unnamed: 0": "source_id"}).drop(columns=["label"])
metric_args[MetricCV.DIMENSIONS.value]["region"][region] = {}
for metric in df.columns[1:]:
metric_args[MetricCV.DIMENSIONS.value]["metric"][metric] = {}
for row in df.itertuples(index=False):
source_id = row.source_id
metric_args[MetricCV.DIMENSIONS.value]["source_id"][source_id] = {}
for metric, value in zip(df.columns[1:], row[1:]):
if source_id not in metric_args[MetricCV.RESULTS.value]:
metric_args[MetricCV.RESULTS.value][source_id] = {}
if region not in metric_args[MetricCV.RESULTS.value][source_id]:
metric_args[MetricCV.RESULTS.value][source_id][region] = {}
metric_args[MetricCV.RESULTS.value][source_id][region][metric] = value
return CMECMetric.model_validate(metric_args), CMECOutput.model_validate(output_args)