class SeaIceAreaBasic(ESMValToolDiagnostic):
"""
Calculate seasonal cycle and time series of NH and SH sea ice area.
"""
name = "Sea ice area basic"
slug = "sea-ice-area-basic"
base_recipe = "ref/recipe_ref_sea_ice_area_basic.yml"
data_requirements = (
DataRequirement(
source_type=SourceDatasetType.CMIP6,
filters=(
FacetFilter(
facets={
"variable_id": "siconc",
"experiment_id": "historical",
"table_id": "SImon",
},
),
),
group_by=("source_id", "member_id", "grid_label"),
constraints=(
RequireTimerange(
group_by=("instance_id",),
start=PartialDateTime(1979, 1),
end=PartialDateTime(2014, 12),
),
AddSupplementaryDataset.from_defaults("areacello", SourceDatasetType.CMIP6),
RequireFacets("variable_id", ("siconc", "areacello")),
),
),
# TODO: Use OSI-450-nh and OSI-450-sh from obs4MIPs once available.
)
facets = ()
series = tuple(
SeriesDefinition(
file_pattern=f"siarea_min/allplots/timeseries_sea_ice_area_{region}_*.nc",
sel={"dim0": i},
dimensions=(
{
"region": REGIONS[region],
"statistic": f"{MONTHS[region]} sea ice area",
}
| ({} if i == 0 else {"reference_source_id": f"OSI-450-{region}"})
),
values_name="siconc",
index_name="time",
attributes=[],
)
for region in REGIONS
for i in range(2)
) + tuple(
SeriesDefinition(
file_pattern=f"siarea_seas/allplots/annual_cycle_sea_ice_area_{region}_*.nc",
sel={"dim0": i},
dimensions=(
{
"region": REGIONS[region],
"statistic": "20-year average seasonal cycle of the sea ice area",
}
| ({} if i == 0 else {"reference_source_id": f"OSI-450-{region}"})
),
values_name="siconc",
index_name="month_number",
attributes=[],
)
for region in REGIONS
for i in range(2)
)
@staticmethod
def update_recipe(
recipe: Recipe,
input_files: dict[SourceDatasetType, pandas.DataFrame],
) -> None:
"""Update the recipe."""
# Update datasets
recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
recipe["datasets"] = recipe_variables["siconc"]["additional_datasets"]
# Use the timerange from the recipe, as defined in the variable.
for dataset in recipe["datasets"]:
dataset.pop("timerange")
# Update observational datasets
nh_obs = {
"dataset": "OSI-450-nh",
"mip": "OImon",
"project": "OBS",
"supplementary_variables": [
{
"short_name": "areacello",
"mip": "fx",
},
],
"tier": 2,
"type": "reanaly",
"version": "v3",
}
sh_obs = nh_obs.copy()
sh_obs["dataset"] = "OSI-450-sh"
diagnostics = recipe["diagnostics"]
diagnostics["siarea_min"]["variables"]["sea_ice_area_nh_sep"]["additional_datasets"] = [nh_obs]
diagnostics["siarea_min"]["variables"]["sea_ice_area_sh_feb"]["additional_datasets"] = [sh_obs]
diagnostics["siarea_seas"]["variables"]["sea_ice_area_nh"]["additional_datasets"] = [nh_obs]
diagnostics["siarea_seas"]["variables"]["sea_ice_area_sh"]["additional_datasets"] = [sh_obs]
# Update the captions.
dataset = "{dataset}.{ensemble}.{grid}".format(**recipe["datasets"][0])
for diagnostic in diagnostics.values():
for script_settings in diagnostic["scripts"].values():
for plot_settings in script_settings["plots"].values():
plot_settings["caption"] = plot_settings["caption"].replace("[dataset]", dataset)