Skip to content

climate_ref_esmvaltool.diagnostics.sea_ice_area_basic #

SeaIceAreaBasic #

Bases: ESMValToolDiagnostic

Calculate seasonal cycle and time series of NH and SH sea ice area.

Source code in packages/climate-ref-esmvaltool/src/climate_ref_esmvaltool/diagnostics/sea_ice_area_basic.py
class SeaIceAreaBasic(ESMValToolDiagnostic):
    """
    Calculate seasonal cycle and time series of NH and SH sea ice area.
    """

    name = "Sea ice area basic"
    slug = "sea-ice-area-basic"
    base_recipe = "ref/recipe_ref_sea_ice_area_basic.yml"

    data_requirements = (
        DataRequirement(
            source_type=SourceDatasetType.CMIP6,
            filters=(
                FacetFilter(
                    facets={
                        "variable_id": "siconc",
                        "experiment_id": "historical",
                        "table_id": "SImon",
                    },
                ),
            ),
            group_by=("source_id", "member_id", "grid_label"),
            constraints=(
                RequireTimerange(
                    group_by=("instance_id",),
                    start=PartialDateTime(1979, 1),
                    end=PartialDateTime(2014, 12),
                ),
                AddSupplementaryDataset.from_defaults("areacello", SourceDatasetType.CMIP6),
                RequireFacets("variable_id", ("siconc", "areacello")),
            ),
        ),
        # TODO: Use OSI-450-nh and OSI-450-sh from obs4MIPs once available.
    )
    facets = ()
    series = tuple(
        SeriesDefinition(
            file_pattern=f"siarea_min/allplots/timeseries_sea_ice_area_{region}_*.nc",
            sel={"dim0": i},
            dimensions=(
                {
                    "region": REGIONS[region],
                    "statistic": f"{MONTHS[region]} sea ice area",
                }
                | ({} if i == 0 else {"reference_source_id": f"OSI-450-{region}"})
            ),
            values_name="siconc",
            index_name="time",
            attributes=[],
        )
        for region in REGIONS
        for i in range(2)
    ) + tuple(
        SeriesDefinition(
            file_pattern=f"siarea_seas/allplots/annual_cycle_sea_ice_area_{region}_*.nc",
            sel={"dim0": i},
            dimensions=(
                {
                    "region": REGIONS[region],
                    "statistic": "20-year average seasonal cycle of the sea ice area",
                }
                | ({} if i == 0 else {"reference_source_id": f"OSI-450-{region}"})
            ),
            values_name="siconc",
            index_name="month_number",
            attributes=[],
        )
        for region in REGIONS
        for i in range(2)
    )

    @staticmethod
    def update_recipe(
        recipe: Recipe,
        input_files: dict[SourceDatasetType, pandas.DataFrame],
    ) -> None:
        """Update the recipe."""
        # Update datasets
        recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
        recipe["datasets"] = recipe_variables["siconc"]["additional_datasets"]

        # Use the timerange from the recipe, as defined in the variable.
        for dataset in recipe["datasets"]:
            dataset.pop("timerange")

        # Update observational datasets
        nh_obs = {
            "dataset": "OSI-450-nh",
            "mip": "OImon",
            "project": "OBS",
            "supplementary_variables": [
                {
                    "short_name": "areacello",
                    "mip": "fx",
                },
            ],
            "tier": 2,
            "type": "reanaly",
            "version": "v3",
        }
        sh_obs = nh_obs.copy()
        sh_obs["dataset"] = "OSI-450-sh"
        diagnostics = recipe["diagnostics"]
        diagnostics["siarea_min"]["variables"]["sea_ice_area_nh_sep"]["additional_datasets"] = [nh_obs]
        diagnostics["siarea_min"]["variables"]["sea_ice_area_sh_feb"]["additional_datasets"] = [sh_obs]
        diagnostics["siarea_seas"]["variables"]["sea_ice_area_nh"]["additional_datasets"] = [nh_obs]
        diagnostics["siarea_seas"]["variables"]["sea_ice_area_sh"]["additional_datasets"] = [sh_obs]

        # Update the captions.
        dataset = "{dataset}.{ensemble}.{grid}".format(**recipe["datasets"][0])
        for diagnostic in diagnostics.values():
            for script_settings in diagnostic["scripts"].values():
                for plot_settings in script_settings["plots"].values():
                    plot_settings["caption"] = plot_settings["caption"].replace("[dataset]", dataset)

update_recipe(recipe, input_files) staticmethod #

Update the recipe.

Source code in packages/climate-ref-esmvaltool/src/climate_ref_esmvaltool/diagnostics/sea_ice_area_basic.py
@staticmethod
def update_recipe(
    recipe: Recipe,
    input_files: dict[SourceDatasetType, pandas.DataFrame],
) -> None:
    """Update the recipe."""
    # Update datasets
    recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
    recipe["datasets"] = recipe_variables["siconc"]["additional_datasets"]

    # Use the timerange from the recipe, as defined in the variable.
    for dataset in recipe["datasets"]:
        dataset.pop("timerange")

    # Update observational datasets
    nh_obs = {
        "dataset": "OSI-450-nh",
        "mip": "OImon",
        "project": "OBS",
        "supplementary_variables": [
            {
                "short_name": "areacello",
                "mip": "fx",
            },
        ],
        "tier": 2,
        "type": "reanaly",
        "version": "v3",
    }
    sh_obs = nh_obs.copy()
    sh_obs["dataset"] = "OSI-450-sh"
    diagnostics = recipe["diagnostics"]
    diagnostics["siarea_min"]["variables"]["sea_ice_area_nh_sep"]["additional_datasets"] = [nh_obs]
    diagnostics["siarea_min"]["variables"]["sea_ice_area_sh_feb"]["additional_datasets"] = [sh_obs]
    diagnostics["siarea_seas"]["variables"]["sea_ice_area_nh"]["additional_datasets"] = [nh_obs]
    diagnostics["siarea_seas"]["variables"]["sea_ice_area_sh"]["additional_datasets"] = [sh_obs]

    # Update the captions.
    dataset = "{dataset}.{ensemble}.{grid}".format(**recipe["datasets"][0])
    for diagnostic in diagnostics.values():
        for script_settings in diagnostic["scripts"].values():
            for plot_settings in script_settings["plots"].values():
                plot_settings["caption"] = plot_settings["caption"].replace("[dataset]", dataset)