class EquilibriumClimateSensitivity(ESMValToolDiagnostic):
"""
Calculate the global mean equilibrium climate sensitivity for a dataset.
"""
name = "Equilibrium Climate Sensitivity"
slug = "equilibrium-climate-sensitivity"
base_recipe = "recipe_ecs.yml"
variables = (
"rlut",
"rsdt",
"rsut",
"tas",
)
experiments = (
"abrupt-4xCO2",
"piControl",
)
data_requirements = (
DataRequirement(
source_type=SourceDatasetType.CMIP6,
filters=(
FacetFilter(
facets={
"variable_id": variables,
"experiment_id": experiments,
"table_id": "Amon",
},
),
),
group_by=("source_id", "member_id", "grid_label"),
constraints=(
RequireContiguousTimerange(group_by=("instance_id",)),
RequireOverlappingTimerange(group_by=("instance_id",)),
RequireFacets(
"variable_id",
required_facets=variables,
group_by=("source_id", "member_id", "grid_label", "experiment_id"),
),
RequireFacets(
"experiment_id",
required_facets=experiments,
group_by=("source_id", "member_id", "grid_label", "variable_id"),
),
AddSupplementaryDataset.from_defaults("areacella", SourceDatasetType.CMIP6),
),
),
)
facets = ("grid_label", "member_id", "source_id", "region", "metric")
series = (
SeriesDefinition(
file_pattern="ecs/calculate/ecs_regression_*.nc",
dimensions={
"statistic": ("global annual mean anomaly of rtnt vs tas"),
},
values_name="rtnt_anomaly",
index_name="tas_anomaly",
attributes=[],
),
)
@staticmethod
def update_recipe(
recipe: Recipe,
input_files: dict[SourceDatasetType, pandas.DataFrame],
) -> None:
"""Update the recipe."""
# Only run the diagnostic that computes ECS for a single model.
recipe["diagnostics"] = {
"ecs": {
"description": "Calculate ECS.",
"variables": {
"tas": {
"preprocessor": "spatial_mean",
},
"rtnt": {
"preprocessor": "spatial_mean",
"derive": True,
},
},
"scripts": {
"calculate": {
"script": "climate_metrics/ecs.py",
"calculate_mmm": False,
},
},
},
}
# Prepare updated datasets section in recipe. It contains two
# datasets, one for the "abrupt-4xCO2" and one for the "piControl"
# experiment.
recipe_variables = dataframe_to_recipe(
input_files[SourceDatasetType.CMIP6],
equalize_timerange=True,
)
recipe["datasets"] = recipe_variables["tas"]["additional_datasets"]
# Remove keys from the recipe that are only used for YAML anchors
keys_to_remove = [
"CMIP5_RTMT",
"CMIP6_RTMT",
"CMIP5_RTNT",
"CMIP6_RTNT",
"ECS_SCRIPT",
"SCATTERPLOT",
]
for key in keys_to_remove:
recipe.pop(key, None)
@staticmethod
def format_result(
result_dir: Path,
execution_dataset: ExecutionDatasetCollection,
metric_args: MetricBundleArgs,
output_args: OutputBundleArgs,
) -> tuple[CMECMetric, CMECOutput]:
"""Format the result."""
ecs_ds = xarray.open_dataset(result_dir / "work" / "ecs" / "calculate" / "ecs.nc")
ecs = float(fillvalues_to_nan(ecs_ds["ecs"].values)[0])
lambda_ds = xarray.open_dataset(result_dir / "work" / "ecs" / "calculate" / "lambda.nc")
lambda_ = float(fillvalues_to_nan(lambda_ds["lambda"].values)[0])
# Update the diagnostic bundle arguments with the computed diagnostics.
metric_args[MetricCV.DIMENSIONS.value] = {
MetricCV.JSON_STRUCTURE.value: [
"region",
"metric",
],
"region": {"global": {}},
"metric": {"ecs": {}, "lambda": {}},
}
metric_args[MetricCV.RESULTS.value] = {
"global": {
"ecs": ecs,
"lambda": lambda_,
},
}
return CMECMetric.model_validate(metric_args), CMECOutput.model_validate(output_args)