class CloudRadiativeEffects(ESMValToolDiagnostic):
"""
Plot climatologies and zonal mean profiles of cloud radiative effects (sw + lw) for a dataset.
"""
name = "Climatologies and zonal mean profiles of cloud radiative effects"
slug = "cloud-radiative-effects"
base_recipe = "ref/recipe_ref_cre.yml"
variables = (
"rlut",
"rlutcs",
"rsut",
"rsutcs",
)
data_requirements = (
DataRequirement(
source_type=SourceDatasetType.CMIP6,
filters=(
FacetFilter(
facets={
"variable_id": variables,
"experiment_id": "historical",
"table_id": "Amon",
}
),
),
group_by=("source_id", "member_id", "grid_label"),
constraints=(
RequireTimerange(
group_by=("instance_id",),
start=PartialDateTime(1996, 1),
end=PartialDateTime(2014, 12),
),
RequireOverlappingTimerange(group_by=("instance_id",)),
RequireFacets("variable_id", variables),
AddSupplementaryDataset.from_defaults("areacella", SourceDatasetType.CMIP6),
),
),
# TODO: Use CERES-EBAF, ESACCI-CLOUD, and ISCCP-FH from obs4MIPs once available.
)
facets = ()
series = tuple(
SeriesDefinition(
file_pattern=f"plot_profiles/plot/variable_vs_lat_{var_name}_*.nc",
sel={"dim0": 0}, # Select the model.
dimensions={"variable_id": var_name, "statistic": "zonal mean"},
values_name=var_name,
index_name="lat",
attributes=[],
)
for var_name in ["lwcre", "swcre"]
) + tuple(
SeriesDefinition(
file_pattern=f"plot_profiles/plot/variable_vs_lat_{var_name}_*.nc",
sel={"dim0": i}, # Select the observation.
dimensions={"variable_id": var_name, "statistic": "zonal mean", "reference_source_id": source_id},
values_name=var_name,
index_name="lat",
attributes=[],
)
for var_name in ["lwcre", "swcre"]
for i, source_id in enumerate(
["CERES-EBAF-Ed4.2", "ESACCI-CLOUD-AVHRR-AMPM-fv3.0", "ISCCP-FH"], start=1
)
)
@staticmethod
def update_recipe(recipe: Recipe, input_files: dict[SourceDatasetType, pandas.DataFrame]) -> None:
"""Update the recipe."""
recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
recipe_variables = {k: v for k, v in recipe_variables.items() if k != "areacella"}
datasets = recipe_variables["rsut"]["additional_datasets"]
for dataset in datasets:
dataset.pop("timerange")
recipe["datasets"] = datasets